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Abstract

This paper describes a global spatial model estimating human impacts on terrestrial
Biodiversity Intactness and the resulting global 100-meter gridded maps for the years
2017-2020. This paper builds on past studies that map Biodiversity Intactness using the
PREDICTS database of spatially referenced observations of biodiversity across 32,000 sites
from over 750 studies. Our approach differs from previous studies by modeling the relationship
between observed biodiversity metrics and contemporary, global, geospatial layers of human
pressures, with the intention of providing a high resolution monitoring product into the future.
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Introduction

Indicators of biodiversity are essential tools for planning and monitoring measures to conserve
the world’s remaining biodiversity. The nations of the world, through the United Nations
Convention on Biological Diversity (CBD), set decadal strategic plans and targets for preserving
the world’s precious biodiversity, most recently in Aichi, Japan in 2010. These global targets are
due for an upgrade, and so are the data products used to assess progress towards those
targets. In particular, measures of biodiversity intactness are key indicators for monitoring
global progress toward Aichi Target 12 (OECD 2019). These indicators are also most useful if
they have the ability to “detect changes in systems within timeframes and on scales relevant to
decision-making” (CBD 2010). However, many existing indicators of biodiversity are out of date
and update infrequently, leaving policymakers with an information gap for understanding recent
change.

Given advancements in data collection, machine learning, and cloud computing, we have
established the software and methods to produce a high-resolution global dataset of
biodiversity intactness that can be run on a continued basis into the future enabling regular
updates to this critical indicator.

Materials and methods

We follow the prior work of Hill et al. (Hill et al. 2018) and Newbold et al. (Newbold et al. 2016) in
constructing our global maps of biodiversity intactness. The Biodiversity Intactness Index (BII),
described by Scholes and Biggs (2005), summarizes the change in ecological communities in
response to human pressures. We estimate intactness as a combination of two metrics:
Abundance, the quantity of individuals, and Compositional Similarity, how similar the
composition of species is to an intact baseline. We fit linear mixed effects models to estimate
the predictive capacity of spatial datasets of human pressures on each of these metrics, and
project results spatially across the globe.

Using the fitted model coefficients, we generate maps of projected Biodiversity Intactness for
2017-2020. Maps are computed at a 0.00090º resolution (approximately 100 m at the equator)
in the WGS84 projection using open source Python libraries on the Microsoft Azure Planetary
Computer infrastructure.
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PREDICTS database

We estimate model parameters by fitting to observed Abundance and Compositional Similarity
derived from the PREDICTS database (Hudson et al. 2017; 2014). The PREDICTS database
includes millions of measurements of species across over 26,000 sampling locations in 94
countries, assembled from approximately 500 studies of geographic variation in biodiversity.
The PREDICTS database was specifically assembled to provide a representative dataset
investigating the effect of human impacts related to land use. Observations are hierarchically
organized by study site, study block (groups of sites observed together), and studies.

We prepare PREDICTS data for model fitting following Hill et al. (Hill et al. 2018). Abundance is
calculated as the sampling-effort-corrected number of individuals at each site relative to the
maximum abundance observed within the study. Compositional Similarity is measured using the
Bray-Curtis dissimilarity index between each site and each site with a “primary minimal” (i.e.
intact) land use classification in the same study. The Bray-Curtis accounts for the dissimilarity
of both the occurrence and quantity of individuals of each species identified in one or both sites
(Bray and Curtis 1957).

Modeling framework

We develop a model that predicts how much the abundance and composition of species is likely
to have changed from a theoretical intact baseline, across the world. As the species of interest
and composition of species will differ across studies and regions, we use a mixed effects
modeling approach to account for study level and site group level differences and to isolate the
fixed effects of human pressures on abundance and composition. In contrast with previous
global Biodiversity Intactness studies that model the effects of human pressures based on
observed land uses reported in PREDICTS studies themselves, we specifically use only
independent global spatially explicit datasets as predictors in our modeling framework.

Predictors

In order to select the predictor variables for our model, we first sought to identify the best
globally mapped proxies for known causal mechanisms of biodiversity degradation (Table 1).
We then eliminated sources for which data was deemed to be unavailable or insufficient. For
example, dasymetric gridded datasets that are derived from national level statistics such as
crop yields, livestock density, and GDP, are likely to have negligible predictive utility as studies
are always within individual countries. As we seek to develop a high-resolution monitoring
product, we prefer data sources with higher spatial resolution that are likely to be continued to
be measured into the future.
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Table 1. Potential spatial covariates for mechanisms of biodiversity degradation.

Mechanism Description Potential covariates

Land use
change

Deforestation, land degradation,
fragmentation, intensive grazing, and
other forms of land use change

Land cover
- Agriculture
- Urban
- Bare ground
- Fragmentation
Forest use
- Plantations
- Managed forest
Agricultural intensity
- Greenness
- Crop yield
Livestock grazing
- Livestock density
- Pasture

Direct
exploitation &
indirect
pressures

Resource extraction, hunting, tourism Distance to roads
Travel time to cities
Population density
Nighttime lights
GDP
Other Infrastructure

Climate change Shifting climate regimes Not applicable to analytical
spatio-temporal scale

Pollution Nutrient loading, pesticides, etc. No known spatial covariates

Invasive and
non-native
species

Non-native species may outcompete
or alter the composition of
ecosystems

No known spatial covariates

“Natural”
disruption

Fires, disease, drought, climatic
variation etc. May be related to
human activity, but can be treated as
stochastic

Climatic regimes
Topography
Fire scars

The final set of candidate predictors (Table 2) include land cover, forest management, and other
human pressures proxied by population, accessibility to cities, and nighttime lights. As it can
take several years for land deforested for development to appear as another land use type, we
also include recent tree cover loss as a predictor.

For each predictor, we extract average values within a buffer of each PREDICTS site to reduce
the effect of noise in high resolution datasets and to reduce potential error introduced by
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inaccuracies in the reported coordinates of PREDICTS sites. We use a square kernel to compute
buffers for computational efficiency in projections. For land cover data, we include both 100m
and 1km buffers to account for edge effects. For land use data, we use only 100m buffers. For
diffuse human pressure proxies, we use 1km buffers. Where multiple years are available, we
select the year of data closest to the median year of observation in the PREDICTS data, 2006. To
limit the effect of outliers, we cap distance-to-roads values greater than 10km to 10km and
travel time to cites values greater than 24hrs to 24hrs. Human pressure proxy variables were
log-transformed to account for diminishing marginal effects.

We opt to not include interactions between variables to simplify model interpretation. The
overlapping nature of the predictor variables and log-transformations should be able to capture
many nonlinear effects.

Table 2. Selected candidate variables for model fitting and selection.

Variable Description Source

Independent variables

ln(TotalAbundance + 1) Log-transformed total abundance of
all observed species at site

PREDICTS (Hudson et al.
2016)

logit(Bray) Logit-transformed compositional
similarity of species at site
compared to intact sites within
study

PREDICTS (Hudson et al.
2016)

Dependent variables

lcCrops_100m Portion of land classified as crops
within a 100 m buffer square kernel

10m Annual Land Use Land
Cover: 9-class (K. Karra et
al. 2021)

lcCrops_1000m Portion of land classified as crops
within a 1 km buffer

10m Annual Land Use Land
Cover: 9-class (K. Karra et
al. 2021)

lcBuiltArea_100m Portion of land classified as built
area within a 100 m buffer

10m Annual Land Use Land
Cover: 9-class (K. Karra et
al. 2021)

lcBulitArea_1000m Portion of land classified as built
area within a 1 km buffer

10m Annual Land Use Land
Cover: 9-class (K. Karra et
al. 2021)
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ln(distRoads + 1) Log-transformed distance to the
nearest road in meters.

Open Street Map
(OpenStreetMap
contributors 2021)

ln(accessibility + 1) Log-transformed travel time to the
nearest city in minutes.

Oxford MAP Travel Time to
Cities
(Weiss et al. 2018)

ln(pD2006_1000m + 1) Log-transformed average population
density within a 1 km buffer square
kernel.

WorldPop 100m
unconstrained population
counts (WorldPop et al.
2018)

ln(nL2012_1000m + 1) Log-transformed average nighttime
light intensity (nW/cm2/sr) within a
1 km buffer square kernel.

Viirs Nighttime Lights
Version 2 median annual
composites (Elvidge et al.
2021)

managedForest_100m Portion of land classified as
plantations, woodlots, or
agroforestry within a 100m buffer

Global forest management
(Lesiv et al. 2022)

forestLoss2006_100m Portion of land classified as tree
cover loss within a 100m buffer

Hansen Global Forest
Change v1.9
(Hansen et al. 2013)

Model selection

We fit mixed effects models of Abundance and Compositional Similarity on all predictors using
the maximum likelihood estimator of the `lme4` R-package. For the Abundance model, we
include a random effect on each study block. For the Compositional Similarity model, we allow
for comparisons across study blocks, including a random effect on each study, and also include
a fixed effect on the log-transformed distance between each pair of sites.

Final model selection is performed to minimize the Akaike Information Criterion (AIC) using
backwards stepwise elimination of insignificant predictors with the `lmerTest` R-package. Model
fitting results are reported in Tables 3-4.
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Table 3. Abundance model coefficients and statistics

Variable Estimate Std. Error

(Intercept) 3.70E+00 5.21E-02***

ln(distRoads + 1) -9.82E-03 3.55E-03**

ln(pD2006_1000m + 1) -9.63E-02 2.89E-02***

lcCrops_100m -7.27E-02 3.44E-02*

lcBuiltArea_1000m 2.54E-01 1.12E-01*

lcBuiltArea_100m -1.77E-01 5.23E-02***

forestLoss2006_100m -1.56E-01 3.87E-02***

Significance levels: * p<0.05, ** p<0.01, *** p<0.001

Table 4. Community similarity model coefficients and statistics

Variable Estimate Std. Error

(Intercept) 2.18E-01 1.69E-01

ln(distRoads + 1) 1.81E-02 1.99E-03***

ln(accessibility + 1) 1.37E-01 7.67E-03***

ln(pD2006_1000m + 1) 2.53E-01 2.05E-02***

ln(nL2012_1000m + 1) -3.14E-01 2.20E-02***

lcCrops_1000m -9.35E-01 3.38E-02***

lcCrops_100m -2.48E-01 1.64E-02***

lcBuiltArea_1000m -7.46E-01 7.26E-02***

forestManagement_100m -7.70E-01 1.99E-02***

forestLoss2006_100m 3.39E-01 2.21E-02***

ln(geog_dist + 1) -1.28E-01 1.73E-03***

Significance levels: * p<0.05, ** p<0.01, *** p<0.001

Projected Biodiversity Intactness 2017-2020

We project the effects of human pressures on biodiversity globally for the period of 2017-2020
as the sum of the product of each layer for the given year and its modeled coefficient. The land
cover, population, nighttime lights, and tree cover loss datasets each cover the entire period. The
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forest management, distance to roads, and accessibility to cities datasets are treated as static
layers across the time period.

Maps for Abundance and Compositional Similarity are created separately, and normalized to a
0-1 scale by dividing by the modeled value for “no human influence”, i.e. the projected value at
the maximum modeled distance of 10km from a road, 24hrs from a city, and with no other
human land uses or pressures. Projected Biodiversity Intactness is then computed as
Abundance * Compositional Similarity. Mapped results for 2020 are shown in Figure 1.

Figure 1. Projected Biodiversity Intactness for the year 2020

Comparison with analogous products

We compare our results to two external datasets: the 2015 Biodiversity Intactness Index (BII) by
Newbold et al. (2016) and the 2020 Biodiversity Habitat Index (BHI) by Harwood et al. (2022).
Both of these datasets use the PREDICTs dataset to spatially model biodiversity intactness, but
differ in their approach. For each dataset we extract values for 10,000 randomly-sampled points
across the world’s land area. We use our 2017 values to compare with the 2015 BII, (the closest
temporal match) and 2020 values to compare with the 2020 BHI. All three datasets provide
index scores between 0 and 1. We calculate both the Pearson’s correlation coefficient, an
indicator of relative alignment in scores, as well as the Mean Absolute Difference in scores
(Table 6).

Table 6. Statistics for comparison with analogous datasets for 10000 randomly sampled points.
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Comparison Mean Absolute Difference Pearson’s Correlation Coefficient

2020 vs BHI 2020 0.09 0.65

2017 vs BII 2015 0.23 0.73

Figure 2. Comparison of scores from this study with scores from the Biodiversity Habitat Index
(A) and the Biodiversity Intactness Index (B) for 10,000 randomly sampled points around the
world.

Discussion

The projected biodiversity intactness data presented provide a globally high-resolution map of
potential degradation of biodiversity due to human influence worldwide. These maps are
generated such that they can be continued to be operationally produced as new monitoring data
is made available, and are intended to be used as a tool for monitoring large scale influence on
biodiversity.

Nonetheless, caution should be taken in interpreting scores at the local scale. Although these
maps are based on thousands of local scale observations of species, they only capture a small
portion of the factors that affect the richness and abundance of biodiversity in local
ecosystems. We identify three key limitations in our approach that should be kept in mind when
interpreting these maps.

First, when comparing study sites to determine levels of intactness, the level of biodiversity at
“intact” sites may reflect an already substantially degraded state. Few areas of the world remain
unaffected by human influence, and maps may be interpreted as an upper bound on biodiversity
intactness.
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Second, pressures that cannot be readily observed from remote sensing, such as pollution,
poaching, disease, livestock grazing, habitat fragmentation, and the competitive pressure of
introduced species will not be well reflected in these maps. Although these pressures may be
broadly captured by proxy variables such as proximity to roads and population centers, they may
lead to incorrect local-scale patterns in the map. For example, since plantation forests are
explicitly measured, but pasturing is not, pasture lands adjacent to managed forest may receive
higher intactness scores despite greater actual degradation.

Third, we do not attempt to account for the sensitivity of different ecosystems to human
pressures. As such, isolated, stressed, or otherwise vulnerable communities may be less intact
than the scores show.

Noting these limitations, we believe that the ability for this methodology and data to provide
large scale consistent monitoring of biodiversity intactness is highly relevant for timely global
policy decision making. Moreover, the approach described here is intended to be able to be run
continuously into the future, and incorporate new and better input data as they become
available. We hope that this open, automated approach will spread to other key environmental
indicators and continue to bridge the knowledge gaps between science and policy making.
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